jueves, 23 de julio de 2015

Viscosidad sanguínea y perfiles de flujo


Extraído de: Aquí
PERFILES DE FLUJO

Un fluido se desplaza en el interior de un tubo cuando la presión en el inicio es superior a la existente al final del tubo, moviéndose desde una zona de mayor presión a una de menor presión. El flujo o caudal depende directamente del gradiente o diferencia de presión entre esos dos puntos e inversamente de la resistencia, en una relación similar a la de Ohm para los circuitos eléctricos.
Tipos de flujo:


Flujo laminar: En condiciones fisiológicas el tipo de flujo mayoritario es el denominado fllujo en capas o laminar, El fluido se desplaza en láminas coaxiales o cilíndricas en las que todas las partículas se mueven sin excepción paralelamente al eje vascular. Se origina un perfil parabólico de velocidades con un valor máximo en el eje o centro geométrico del tubo. En el sistema vascular los elementos celulares que se encuentran en sangre son desplazados tanto más o fuertemente hacia el centro cuanto mayor sea su tamaño.

Flujo turbulento. E la circulación sanguínea en regiones con curvaturas pronunciadas, en regiones estrechadas o en bifurcaciones, con valores por encima de 400, aparecen remolinos locales en las capas limítrofes de la corriente. Cuando se llega a 2000- 2400 el flujo es totalmente turbulento. Aunque la aparición de turbulencias no es deseable por el riesgo que tienen de producir coágulos sanguíneos, se pueden utilizar como procedimientos diagnósticos, ya que mientras el flujo laminar es silencioso, el turbulento genera ruidos audibles a través de un estetoscopio.

VISCOSIDAD

Uno de los factores que determina la resistencia al movimiento de los fluidos son las fuerzas de rozamiento entre las partes contiguas del fluido, las fuerzas de viscosidad.
La viscosidad se define como la propiedad de los fluidos, principalmente de los líquidos, de oponer resistencia al desplazamiento tangencial de capas de moléculas. Según Newton, resulta del cociente entre la tensión de propulsión o fuerza de cizalladura y el gradiente de velocidad entre la distintas capas de líquidos.
Los fluidos newtonianos u homogéneos son los que muestran una viscosidad constante, como el agua, o las soluciones de electrolitos; por el contrario, los fluidos no newtonianos, o heterogéneos, presentan una viscosidad variable, es el caso de la sangre que se modifica dependiendo de las dimensiones del tubo y del tipo de flujo.

Así ha de tenerse en cuenta que la sangre no presenta una viscosidad constante. Al estar formada por células y plasma, las primeras son las responsables principales de la viscosidad sanguínea, y tanto el hematocrito como la velocidad del flujo y el diámetro del vaso modifican la viscosidad de la sangre. A altas velocidades, la viscosidad disminuye al situarse las células preferentemente en el eje central del vaso.


     
       
     Ley de POISEVILLE.


Ley de Poiseuille.- En flujos laminares que se desarrollan en tubos cilíndricos, se pueden deducir las relaciones entre la intensidad del flujo, el gradiente de presión y la resistencia o fuerzas de fricción que actúan sobre las capas de envoltura. La ley de Poiseuille es una ecuación hemodinámica fundamental en la que se establece:  

8 es el factor que resulta de la integración del perfil de la velocidad.

Debido a la longitud de los vasos y la viscosidad son relativamente constante, el flujo viene determinado básicamente por el gradiente de presión y por el radio. De la ecuación representada, destaca el hecho de que el radio al estar elevado a la cuarta potencia, se constituye como el factor más importante. Si suponemos un vaso con un flujo de 1 mL/seg al aumentar el diámetro dos veces el flujo para a ser de 16 ml/seg, y si el diámetro aumenta cuatro veces el flujo pasará a ser 256 ml/seg. Por esta relación se puede justificar el papel preponderante que los cambios en la radio del conducto juegan en la regulación del flujo sanguíneo.

La ecuación de Poiseuille está formulada para flujos homogéneos con viscosidad constante, sin embrago, en los vasos sanguíneos estas condiciones no siempre se cumplen; si la velocidad del flujo es alta o si el gradiente de presión es elevado, se pueden generar remolinos o turbulencias que modifican el patrón del flujo. Al producirse turbulencias se necesitarán gradientes de presión mayores para mantener el mismo flujo

No hay comentarios:

Publicar un comentario